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Equations of perturbed motion of a planet were partly known to Newton;
the history of the problem and the derivation of these equations are pre-
sented in Tisserand's well-known treatise on celestial mechanics [ 1] and
in the work of Krylov [2]. Tisserand, following the general methods of
the theory of perturbed motion, computes Lagrange’s bracket expressions
for the elliptic elements of the orbit; Krylov’s*derivation is based on
geometric constructions. These equations have also been derived in
Duboshin’s book [3 ].

The derivation suggested below is based on the direct application of
the method of variation of parameters. The equation of the elliptic orbit
is written down in vector form,
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where e is the unit vector from the center of attraction to the moving
point; a, e are the major semi-axis and the maximum eccentricity of the
orbit, cos ¢ = e .1,, where i, is the unit vector in the direction towards
the perigee (the major semi-axis of the orbit).

We introduce an orthogonal set of unit vectors e, ey e3 =e X e;
the unit vector e, is in the orbit plane in the direction of increase of
angle ¢, perpendicularly to e, the vector e defines the orbit plane in
an unperturbed motion.

In an unperturbed motion this set has an angular velocity«ﬁea, so that
6. =o0e, €, =—ge, €=0 @)
and according to the law of areas
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where p is the proportionality coefficient of the law of attraction.

The position of the orbit plane is defined by the longitude of the
rising node (), which gives the direction of the unit vector n of the node
line, and by the angle of inclination i of the orbit plane to the plane
0&n of the system of fixed axes 0£n{; the position of the perigee in
the orbit plane is given by the angular distance w of the perigee from the

node, so that cos w= n-il.

The velocity vector of the perturbed motion, as follows from (1), (2),
(3) is equal to

v=r= l// % . le, esingte (1 + ¢ cos9)] (4)
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and the acceleration vector

We=v=— ‘¢ 6)]

Following the method of variation of parameters, for vectors r and v
we will retain the same expressions (1) and (4) for the perturbed motion
as for the unperturbed one; but the elliptic elements of the orbit a, e,
), i, w will not be constants but unknown functions of time. On account
of change of angles €}, i, w in the perturbed motion, the angular velocity
w of the set L e¢. e, will be equal to
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where k is the unit vector on the axis 0C.

Its projections on the axes of the set e. q¢, e;, are obtained from
the known formulas
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where u = w + ¢. Let us note that ¢ in these equations of perturbed motion
is different from the value ohtained from (3); the latter will be denoted
by ¢0; generally the small zero superscript will denote values for the un-
perturbed motion below.

From formulas for differentiation of unit vectors we have
é, =0 xe =—a e+ (0 + e,

é‘;:wxeep:wrea"“(ms"*‘ q;)er (8)
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Setting as a condition the following equations
r=v=v" v=w°+F 9
where F is an additional force acting at a point in a perturbed motion,

after carrying out the differentiation and considering (8), we arrive at
the equations
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From (10) we obtain three equations
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The last of these equations will become explicitly
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Making use of relation (12), the equations obtained from the vectorial
equation (11) can be written in the following form
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From the first equation (12) and the last equation (14), recalling the
values (7) of the quantities @, and @ ;, we find the equations of per-
turbed motion for the elements {) and i
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From (13) and (14) we obtain
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Equations (15), (16), together with the second equation (12), represent
the required system of equations of perturbed motion.
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